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ABSTRACT
As scientific computation continues to scale, efficient use of
floating-point arithmetic processors is critical. Lower preci-
sion allows streaming architectures to perform more opera-
tions per second and can reduce memory bandwidth pressure
on all architectures. However, using a precision that is too
low for a given algorithm and data set leads to inaccurate re-
sults. In this paper, we present a framework that uses binary
instrumentation and modification to build mixed-precision
configurations of existing binaries that were originally devel-
oped to use only double-precision. This framework allows
developers to explore mixed-precision configurations with-
out modifying their source code, and it enables automatic
analysis of floating-point precision. We include a simple
search algorithm to automate identification of code regions
that can use lower precision. Our results for several bench-
marks show that our framework incurs low overhead (less
than 10X in most cases). In addition, we demonstrate that
our tool can replicate manual conversions and suggest fur-
ther optimization; in one case, we achieve a speedup of 2X.

1. INTRODUCTION
“Floating-point” is a method of representing real numbers

in a finite binary format. It stores a number in a fixed-width
field with three segments: 1) a sign bit (b), 2) an exponent
field (e), and 3) a significand (or mantissa) (s). The stored
value is (−1)b · s · 2e. Floating-point was first used in com-
puters in the early 1940’s, and was standardized by IEEE
in 1985, with the latest revision approved in 2008 [26]. The
IEEE standard provides for different levels of precision by
varying the field width, with the most common widths being
32 bits (“single” precision) and 64 bits (“double” precision).
Figure 1 graphically represents these formats.
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Double-precision arithmetic generally results in more ac-
curate computations, but with several costs. The main cost
is the higher memory bandwidth and storage requirement,
which are twice that of single precision. Another cost is
the reduced opportunity for parallelization, such as. on the
x86 architecture, where packed 128-bit XMM registers can
only hold and operate on two double-precision numbers si-
multaneously compared to four numbers with single preci-
sion. Finally, some architectures even impose a higher cycle
count (and thus also energy cost) for each arithmetic oper-
ation in double precision. In practice, it has been reported
that single-precision calculations can be 2.5 times faster than
corresponding double-precision calculations, because of the
various factors described above [19].

As high-performance computing continues to scale, these
concerns regarding precision, memory bandwidth, and en-
ergy usage will become increasingly important [15]. Thus,
application developers have powerful incentives to use a lower
precision wherever possible without compromising overall
accuracy. Unfortunately, the numerical accuracy degrada-
tion of switching to single precision can be fatal in some
cases, and many developers simply choose the “safe option”
of sticking with double precision in all cases.

Many computational scientists are investigating another
option: “mixed-precision”configurations. With these schemes,
certain parts of the program use double-precision operations
to preserve numerical accuracy while the rest of the pro-
gram uses single-precision operations to increase speed and
save memory bandwidth. Thus, the developer can still reap
some of the benefits of single precision while maintaining the
desired level of accuracy. However, building these mixed-
precision configurations can be difficult. This task either
requires extensive knowledge of numerical analysis and the
problem domain or many trial-and-error experiments.

In this paper, we present a framework that uses automatic
binary instrumentation and modification to build mixed-
precision versions of existing binaries that were originally
developed to use double precision only. Our framework al-
lows developers to experiment with mixed-precision configu-
rations easily, without modifying their source code. We also
present a simple search algorithm to find a mixed-precision
variation of the program automatically.

Our results for several benchmarks show that our frame-
work is effective and incurs low overhead. In most cases, the
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Figure 2: Mixed-precision analysis system overview

overhead is less than 10X, which is several orders of mag-
nitude lower that existing floating-point analysis tools. For
several of these benchmarks, the tool found that over 20%
of all floating-point operations could be replaced with their
single-precision equivalents. We also tested the AMG mi-
crokernel and found that the entire kernel could be replaced
with single-precision arithmetic, resulting in a speedup of
nearly 2X. In addition, our tool was able to replicate a man-
ual conversion of SuperLU from double precision to single
precision, and we show that loosening the error bounds can
increase the amount of the program that can be replaced
with single precision arithmetic.

The rest of the paper is arranged as follows. First, we de-
scribe our approach and implementation in Section 2. Sec-
ond, we relate our evaluation and results in Section 3. Fi-
nally, we briefly enumerate related work in Section 4.

2. OUR APPROACH
We introduce a comprehensive system for analyzing an

application’s precision requirements. Given a representative
data set and a verification routine, this system builds mul-
tiple mixed-precision configurations of the application and

evaluates them, choosing the one that promises the greatest
benefit in terms of speedup and easing of memory bandwidth
pressure. Figure 2 shows an overview of this system.

A key system component is our framework for automatic
binary-level mixed-precision configuration of floating-point
programs. Section 2.1 describes our format for storing floating-
point configurations and our GUI editor for building and
visualizing the resulting program. This framework is based
on the Dyninst library [8] for binary code patching and uses
XED from the Intel Pin library [37] for instruction parsing.
Section 2.2 describes the current, simple search algorithm,
which consists of a breadth-first search through the program
structure to find the coarsest granularity at which each part
of the program can be replaced by single precision while still
passing a user-provided verification routine. We describe in
Section 2.3 our novel technique that inserts single-precision
operations to replace double-precision operations. Our tech-
nique modifies the 64 bits that hold the double-precision rep-
resentation to simulate single precision, storing a flag in the
extra bits to indicate the presence of a modified number.
This approach does not fully realize the benefits of using
single precision format but allows us to identify when sin-
gle precision preserves sufficient accuracy. The source code
can then be transformed to realize the full benefits for sit-
uations that we identify as safe. Finally, as we describe in
Section 2.4, we use basic block patching to extract the orig-
inal double-precision floating-point instructions and replace
them with new code, contained in binary “snippets.”

2.1 Configuration representations
Our “precision configurations.” provide a method of com-

municating which parts of a program should be executed
in single precision and which parts should be executed in
double precision. A configuration is a series of mappings:

p→ {single, double, ignore}

The mappings involve all p ∈ Pd, where Pd is the set of
all double-precision instructions in program P . Since there
are natural parent-child containment aggregations in pro-
gram structure (i.e., instructions are contained within basic
blocks, which are contained within functions), the config-
uration allows decisions to be made about these aggregate
structures, overriding any decisions about child members.
The configuration controls the analysis engine as follows:

• If the mapping for pi is single, then the opcode of pi
will be replaced with the corresponding single-precision



FUNC01: main()
BBLK01

s INSN01: 0x6f45ce "addsd %xmm1, %xmm0"
d INSN02: 0x6f45d7 "mulsd %xmm2, %xmm1"
s INSN03: 0x6f45da "subsd %xmm1, %xmm0"
d INSN04: 0x6f45e8 "mulsd %xmm2, %xmm1"

FUNC02: solve()
BBLK02

s INSN05: 0x6f7abe "addsd %xmm1, %xmm0"
s INSN06: 0x6f7ac6 "addsd %xmm1, %xmm0"
s INSN07: 0x6f7aca "addsd %xmm1, %xmm0"
d INSN08: 0x6f7ad3 "mulsd %xmm1, %xmm2"
s INSN09: 0x6f7ada "addsd %xmm1, %xmm0"

BBLK03
d INSN10: 0x6f7aee "mulsd %xmm1, %xmm2"
d INSN11: 0x6f7af4 "subsd %xmm1, %xmm0"
d INSN12: 0x6f7af9 "mulsd %xmm1, %xmm2"

s FUNC03: split()
BBLK04

s INSN13: 0x6f8248 "subsd %xmm1, %xmm0"
d INSN14: 0x6f824c "divsd %xmm2, %xmm1"
d INSN15: 0x6f824f "divsd %xmm2, %xmm1"

Figure 3: Example replacement analysis configuration file

opcode, the inputs will be cast to single precision be-
fore the operation, and the result will be stored as a
replaced double-precision number with a flag.
• If the mapping for pi is double, then the opcode of pi

will not be replaced, the inputs will be cast to double
precision before the operation, and the result will be
stored as a regular double-precision number.
• If the mapping for pi is ignore, then instruction pi will

be ignored entirely, which is useful for flagging unusual
constructs like random number generation routines.

We use a simple, human-readable exchange file format
(Figure 3 shows an example) to store these configurations.
The file is plain text and lists the program’s functions, basic
blocks, and instructions, using indentation to improve read-
ability. The initial list of these structures is easily generated
using a simple static analysis that traverses the program’s
control flow graph. The first column contains flags such
as “d” (double precision), “s” (single precision), or “i” (ig-
nore) that control the precision of the code structures dur-
ing instrumentation. The format supports simple toggling of
larger aggregate structures like functions. If an aggregate en-
try has a flag in the first column, it overrides any flags spec-
ified for its children; if the aggregate entry has no flag, each
child requires a flag individually. Our automated search sys-
tem automatically generates new configuration files, which
we then pass to our instrumentation system.

In the example configuration of Figure 3, certain instruc-
tions from each function have been selected for replacement
with single precision. In addition, the function split() has
a single-precision replacement flag, overriding the individual
flags of all instructions in that function.

We also built a GUI (shown in Figure 4) that displays
a tree corresponding to the program structure, allowing a
developer to adjust a configuration manually without having
to edit a lengthy text file. The GUI also allows the developer
to visualize the results of our automatic search to understand
what part of the code can be changed to single precision. If
debug information is available, the GUI can also present a
view that shows the corresponding source code location for a
particular instruction. This capability aids in the conversion
of particular code regions to single precision.

2.2 Automatic breadth-first search
We developed a simple automatic search system that at-

tempts to replace as much of the program as possible using a
breadth-first search through the entire program’s configura-
tion space. There are 2n total possible configurations to test,
where n is the number of floating-point instructions in the
program. Since evaluating each test configuration requires a
full program run, exhaustively testing every configuration is
not feasible. Our bread-first search strategy represents our
initial attempt to exploit some structure in these configura-
tions for a faster search. Improving the search strategy is
an ongoing area of research.

Our search maintains a work queue of possible config-
urations, testing them one by one and adding to the fi-
nal configuration any individual configurations that pass
the application-defined verification process. This process is
highly parallelizable, and the system can launch many inde-
pendent tests if cores are available. The search first gener-
ates configurations for each module in the program. Each
configuration replaces the entire corresponding module with
single precision, leaving the rest of the program in double
precision. If any of these module-level configurations fail to
pass verification, the routine begins to descend recursively
through the program structure, testing function-level con-
figurations before continuing to basic blocks and finally in-
dividual instructions as necessary. The recursion terminates
when any structure (module, function, or block) is replaced
and passes verification, or when the search tests an individ-
ual instruction (which cannot be further subdivided). The
search can also be configured to stop at basic blocks or func-
tions, allowing for faster convergence with coarser results.

Our system includes two simple optimizations that en-
hance the search speed and help the search converge faster.
The first optimization involves using a binary search to break
up large functions and basic blocks into two equally-sized in-
termediate partitions, rather than adding them all immedi-
ately as individual configurations when the parent configu-
ration fails. This reduces the amount of configurations that
must be tested when there are a large number of replace-
able sections sprinkled with a few non-replaceable sections.
The second optimization prioritizes configurations based on
an initial profiling run; the configurations that replace the
most frequently executed instructions are tested first. This
allows the search to rule out large replacements more quickly
and to provide faster preliminary results to the user.

After performing a brute-force breadth-first search through
the program’s structure, our tool will have found the coars-
est granularity at which each part of the program can suc-
cessfully be replaced by single precision. The routine then
assembles a “final” configuration by taking the union of all
previously-found successful individual configurations. This
configuration is also tested automatically, although it may
not pass verification without further changes because the
precision levels of various instructions are not independent.
In other words, decreasing precision in one part of a pro-
gram may impact the sensitivity of other portions. How-
ever, the final configuration serves as an interesting starting
point for the developer to investigate since it represents a
rough indicator of how much of the original program can be
individually replaced by single precision while maintaining
the original desired level of accuracy.



Figure 4: Graphical configuration editor, viewing a configuration for one of the NAS benchmarks

2.3 Binary modification
Our strategy for implementing mixed-precision configura-

tions in existing binaries is to replace some double-precision
instructions selectively with their single-precision equiva-
lents, and to replace their double-precision operands with
their single-precision equivalents in memory. Of course, af-
ter our system produces a final configuration, a programmer
would then need to convert these operations to single preci-
sion in the original code. Recall that the purpose of our sys-
tem is to identify regions of a program that can be computed
in single precision, not to perform the code transformation
in the original source language.

These narrowing conversions (double precision to single
precision) allow our analysis to store the new (lower-precision)
value in the same location as the old value. Thus, the 32 bits
of the new single-precision value are stored in the lower 32
bits of the original 64-bit double-precision register or mem-
ory location. The remaining high 32 bits are set to a spe-
cific bit pattern (0x7FF4DEAD) 1 to indicate to the analysis
that this value has been replaced. Figure 5 illustrates this
process. This technique works for single values as well as
“packed” floating-point values in 128-bit XMM registers.

To implement a replaced instruction, our framework can
insert a streamlined “binary blob” snippet of machine code
instructions. This snippet checks the operands (replacing
them if necessary) and runs the original instruction in the
desired precision. The desired precision is dictated for every
floating-point instruction in the original program by a con-

1We choose this value for two reasons. The first four hex
digits (0x7FF4) encode a NaN, ensuring that the program
never silently propagates incorrect values. The second four
hex digits (0xDEAD) form a common human-readable value
that is easy to spot in a hex dump.

figuration file, described in Section 2.1. These new machine
code instructions are generated by a simple mini-compiler,
which implements routines for building flag tests and re-
writing instruction opcodes in lower precisions. Figure 6
shows the template for these snippets in the case where we
perform the instruction in single precision.

Since most of the snippet operations are integer instruc-
tions, the snippets impose a minimal overhead, and the
downcast operation is performed only when the input has
not already been replaced. In order to avoid hard-to-find
synchronization bugs or writing to unwritable memory, the
analysis copies any memory operands into a temporary regis-
ter, and modifies the replaced instruction to use only register
operands. In addition, once we replace any instruction with
its single-precision equivalent, we must replace all floating-
point instructions with our snippets, even the ones that are
to be performed in double-precision. This change is neces-
sary even if we do not replace a particular instruction with
its single-precision equivalent, because we must add a check
and possible upcast in case any of the incoming operands
were replaced with single precision by an earlier operation.
This requirement provides the benefit that anything that
our analysis misses causes a crash, which is much easier to
debug than mis-rounded operations.

2.4 Basic block patching
To modify the binary and insert our code snippets, we use

Dyninst’s CFG-patching API. This API allows us to split the
original program’s basic blocks at arbitrary points and re-
arrange the edges between blocks. To insert our code in the
place of an instruction, we first split the basic block that con-
tains the instruction into three blocks: 1) any instructions
before the original instruction, 2) the original instruction,
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push %rax
push %rbx

<for each input operand>
<copy input into %rax>
mov %rbx, 0xffffffff00000000
and %rax, %rbx # extract high word
mov %rbx, 0x7ff4dead00000000
test %rax, %rbx # check for flag
je next # skip if replaced
<copy input into %rax>
cvtsd2ss %rax, %rax # down-cast value
or %rax, %rbx # set flag
<copy %rax back into input>

next:
<next operand>
pop %rbx
pop %rax
<replaced operand> # e.g. addsd => addss

<fix flags in any packed outputs>

Figure 6: Single-precision replacement template

and 3) any instructions after the original instruction. This
allows us to insert our own code and re-arrange the edges
from the surrounding parts of the original basic block to
point to our new code instead of the original instruction.
Figure 7 illustrates this process.

After performing the patching process, we use Dyninst’s
binary rewriter to create a new executable with the replaced
code. The rewriter can also output modified shared libraries,
allowing us to instrument and to modify functions in exter-
nal dependencies. Thus, we can analyze third-party libraries
even if the source code is not available.

2.5 Future optimizations
We have several avenues to improve our current system.

First, we could reduce the runtime overhead by streamlining
the machine code that is emitted, in order to produce more
compact and efficient snippets. Second, we observe that in
many cases the implementations of transcendental functions
like sine, cosine, and logarithms contain lookup routines or
bitwise manipulation for speed. Adding special handling for
these functions improves performance and increases the frac-
tion of the instructions in the original program that can be
replaced with single precision. Third, static data flow anal-
ysis could improve overheads by detecting instructions that
never encounter replaced double-precision numbers under a
given configuration, and thus would not need to be replaced
with a double-precision snippet. Finally, we could stream-

double  single conversion

original instruction in block

block splits

initialization cleanup

Figure 7: Basic block patching

line the search algorithm to converge more quickly on the
optimal configuration by adapting more conventional search
heuristics rather than doing a simple breadth-first search.

3. RESULTS
In this section, we present results using our analysis tech-

nique. First, we show that the runtime overhead on several
standard benchmarks is feasible for real workloads. Second,
we show how our technique can inform developers about the
floating-point behavior of their program and its sensitivity
to roundoff error. Third, we show how our analysis can
inform floating-point transformations for runtime speedup.
Since most aspects of identifying mixed precision code re-
gions amount to a single-node optimization, we confined our
experiments to single nodes.

3.1 Correctness and runtime overheads
We first verified the correctness of our replacement on sev-

eral NAS benchmarks [5] by manually converting the codes
to use single precision and comparing the outputs to that
of the instrumented version. The final results were iden-
tical, bit-for-bit, indicating that the instrumented versions
were performing the exact same operations as the manually-
converted versions of the original programs.

As a part of this verification, we developed a small script
that attempted an automatic translation of Fortran source
code to use single precision instead of double precision. How-
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Benchmark Overhead
ep.A 3.4X
ep.C 5.5X
cg.A 3.4X
cg.C 4.5X
ft.A 4.2X
ft.C 7.0X

mg.A 5.8X
mg.C 14.7X

Figure 9: NAS benchmark overhead results

ever, we still had to tweak some files by hand, since some
source files were generated by auto-configuration scripts. In
some cases, while examining the results of the comparison,
we found errors in our manual conversion, which needed
to be corrected before the results matched. This process
demonstrates that even by itself, the whole-program replace-
ment routine is valuable as a complete automation of a error-
prone manual (or semi-automated) process.

To examine the overhead of our tool, we looked at intra-
node scaling by replacing all instructions with double-precision
snippets. This transformation does not affect the semantics
or results of the program, but shows how much overhead
our inserted code causes in the base case in which it makes
no conversions. Figure 8 shows the runtime overhead re-
sults from these experiments with Class A versions of the
benchmarks. In general, the overall overhead decreases as
the number of threads on a single core increases. Figure 9
shows specific runtime overheads from individual configura-
tions for Class A and C inputs.

All benchmarks were MPI versions compiled by the Intel
Fortran compiler with -O2 optimization enabled. Tests were
performed on a distributed cluster, each node with twelve
Intel Xeon 2.8GHz cores and 24 GB memory running 64-bit
Linux. Each run used eight cores. The overhead was cal-
culated as the ratio between the instrumented and original
execution user CPU times as reported by the “time” com-
mand. In most cases, these overheads are under 20X, mak-
ing this technique viable for test and trial runs on real data.
In particular, these overheads are two orders of magnitude
below those reported by the runtime cancellation detection
tool [6] mentioned in the related work section, which range
from 160X to over 1000X.

We also ran our automatic mixed-configuration search on
these NAS benchmarks. For simplicity and speed of execu-

tion, we used the single-threaded versions of the benchmarks
in this experiment. For each benchmark, we tested two in-
put set sizes: class W and class A. All benchmarks were
compiled by the Intel Fortran compiler with optimization
enabled, and the tests were performed on the same cluster
as the overhead experiments.

The benchmarks provided a wide range of replacement
results. The percentages in Figure 10 indicate how sen-
sitive the benchmark is to the precision level used. The
columns contain the number of instructions that were can-
didates for replacement, the total number of configurations
tested, the percentage of instructions replaced with single
precision (measured statically), the percentage of instruction
executions replaced (measured dynamically at runtime), and
the verification result of the final composed configuration.

In nearly all cases, the system tested fewer configurations
than there were candidates, showing that our techniques for
pruning the search space are effective.2 Some benchmarks
(such as CG and FT) seem to be highly sensitive, since only
a very low percentage of instruction executions can be re-
placed. Others seem to hold more promise for building a
mixed-precision version. The ones that fail the final verifi-
cation illustrate that using the simple union of all individ-
ually passing instructions does not automatically guarantee
a passing configuration. This observation suggests that a
second search phase may be useful, to determine the largest
subset of individually-passing instruction replacements that
may be composed to create a passing final configuration.

3.2 AMG Microkernel
To conduct an end-to-end test of our tool and a subse-

quent code modification by a programmer, we looked for a
program that could run entirely in single precision, in or-
der to simplify the manual conversion process. It was also
necessary that the program include a verification routine
that could be analyzed by our tool. The Algebraic Multi-
Grid microkernel [1], which performs the critical sections of
a multigrid solver, met our needs. For our experiments, we
used 5,000 iterations on eight cores.

As expected, our system verified that the kernel could be
replaced with single precision. The overhead of our analy-
sis was only 1.2X for this benchmark, with all instructions
replaced by single precision. We verified the results by man-
ually converting the entire program to single precision and
re-compiling. This conversion includes changing the verifica-
tion routine to single precision, but in some circumstances
this change is acceptable. In this instance, the adaptive
nature of the multigrid method corrects for numerical inac-
curacy by iterating to increasingly accurate results. For the
microkernel, we observed a user CPU time decrease from
175.48s for the double-precision version to 95.25s for the
single-precision version, a nearly 2X speedup.

3.3 SuperLU Linear Solver
To evaluate our tool further, we use a test program that

is already implemented in both single- and double-precision
versions, the SuperLU [14] general purpose linear solver. LU

2The one exception (SP) had many instructions in the fi-
nal configuration that sequentially alternated between single
and double precision, causing our search engine to spend an
inordinate amount of time searching individual instructions
rather than aggregated structures, leading to tests of more
configurations than actual candidates.



Configurations Instructions Replaced Final
Benchmark Candidates Tested Static Dynamic Verification

bt.W 6,647 3,854 76.2% 85.7% fail
bt.A 6,682 3,832 75.9% 81.6% pass
cg.W 940 270 93.7% 6.4% pass
cg.A 934 229 94.7% 5.3% pass
ep.W 397 112 93.7% 30.7% pass
ep.A 397 113 93.1% 23.9% pass
ft.W 422 72 84.4% 0.3% pass
ft.A 422 73 93.6% 0.2% pass
lu.W 5,957 3,769 73.7% 65.5% fail
lu.A 5,929 2,814 80.4% 69.4% pass

mg.W 1,351 458 84.4% 28.0% pass
mg.A 1,351 456 84.1% 24.4% pass
sp.W 4,772 5,729 36.9% 45.8% fail
sp.A 4,821 5,044 51.9% 43.0% fail

Figure 10: NAS benchmark results, showing the benchmark name, number of candidates for replacement, number of con-
figurations tested, percentage of instructions replaced with single precision (measured statically), percentage of instruction
executions replaced (measured dynamically at runtime), and the verification result of the final composed configuration

Instructions Replaced
Threshold Static Dynamic Final Error

1.0e-03 99.1% 99.9% 1.59e-04
1.0e-04 94.1% 87.3% 4.42e-05
7.5e-05 91.3% 52.5% 4.40e-05
5.0e-05 87.9% 45.2% 3.00e-05
2.5e-05 80.3% 26.6% 1.69e-05
1.0e-05 75.4% 1.6% 7.15e-07
1.0e-06 72.6% 1.6% 4.77e-07

Figure 11: SuperLU linear solver memplus results

decomposition and linear solving comprise some of the most
computationally expensive portions of larger scientific codes.
The SuperLU library performs such operations, and it in-
cludes a single-core linear solver example program that can
be compiled to use either single- or double-precision (but
not mixed-precision). The program also reports an error
metric that is useful in comparing the sensitivity of various
mixed-precision configurations.

For these experiments we used the “memplus” memory
circuit design data set from the Matrix Market [7], which
contains nearly 18K rows. The linear solver for this data
set runs for around three seconds on our machine, which
allows us to test many configurations. The single-precision
manually recompiled version achieves a 1.16X speedup over
the double-precision version, which is equivalent to a 150
MFlops improvement. The reported error for the double-
precision version of the solver is 2.16e-12, and the reported
error for the single-precision version is 5.86e-04.

To run an automated search on the linear solver program,
we wrote a driver script that ran the program and com-
pared the reported error against a predefined threshold error
bound. Using an error bound just above the error returned
by the single-precision version, our search tool found that
99.1% of the double-precision solver’s floating-point instruc-
tions could be replaced by single-precision. This equated to
99.9% of all runtime floating-point operations. That per-
centage matches the precision profile of the single-precision

version of the program, and shows that our tool can find all
replacements inserted manually by an expert.

Figure 11 shows the results of running our search tool
using various error thresholds. The general trend is that
when the error threshold is stricter, the search finds fewer
static or dynamic instructions that can be replaced. For
this application, the error of the final run (using the union
of all passing configurations) tends to be much lower than
the threshold used during the search. Thus, our tool can
help identify the areas of a program that are sensitive to
roundoff error.

4. RELATED WORK

4.1 Backwards & forwards error analysis
The analysis efforts regarding floating-point representa-

tion and its accompanying roundoff error initially focused
on manual backward and forward error analysis. This field
was active as early as 1959 [11], with Wilkinson’s seminal
work in the area being published in 1964 [44]. This research
was continued by others throughout the following decades
up to the present time [28, 33, 29, 31, 36] and recently sum-
marized by Goldberg and Higham [21, 24].

Forward error analysis begins at the input and examines
how errors are magnified by each operation. Backward error
analysis is a complementary approach that starts with the
computed answer and determines the exact floating-point
input that would produce it. Both techniques provide an
indication of how sensitive the computation is, and how in-
correct the computed answer might be. Computations that
are highly sensitive are called ill-conditioned.

Higham [24] describes examples of these analyses for a
variety of different numerical analysis problems. Unfortu-
nately, the results of these analyses are difficult for a pro-
grammer to understand or to apply without extensive train-
ing or error analysis background.

4.2 Interval & affine arithmetic
Researchers have attempted to model the behavior of a

floating-point program using a technique called“interval arith-



metic”[29, 30, 41], which represents every number x in a pro-
gram using a range x̄ = [x.lo, x.hi] instead of a fixed value.
Arithmetic operations operate on these intervals, usually re-
sulting in a wider interval in the result:

x̄+ ȳ = [x.lo+ y.lo, x.hi+ y.hi]

x̄− ȳ = [x.lo− y.hi, x.hi− y.lo]

Unfortunately, regular interval arithmetic is not always
useful due to the quick compounding of errors [2], and the
difficulty of handling intervals containing zero [24]. In the
worst case, division by zero will produce an invalid interval,
or the interval will eventually expand to (− inf,+ inf), a re-
sult that is trivially correct but practically useless. Even in
less extreme circumstances, however, the average-case error
is rarely as bad as the worst-case, and so interval analysis
by itself is usually of little value to programmers who are
merely interested in the practical behavior.

Interval arithmetic was later improved by Andrade and
others [2] with the concept of “affine arithmetic,” replacing
the ranges of interval arithmetic with a linear combination
of error factors. In this scheme, a number x is represented
as a first-degree polynomial x̂:

x̂ = x0 + x1ε1 + x2ε2 + · · ·+ xnεn

Affine representation preserves information about error in-
dependence, and allows some errors to cancel out others.
This sharing indicates that the error came from the same
input and will cancel out in the sum. Thus, the bounds for
the result are tighter than those that would be obtained in
standard interval arithmetic.

More recently, Goubault and Martel and others [13, 16, 17,
22, 35, 38, 39] have built abstract semantics and static analy-
ses using affine arithmetic. These techniques, like any static
analysis, are a priori and give conservative error estimates.
In addition, recent work by Martel and others [40] describes
a system that can perform program transformations to in-
crease accuracy. These transformations involve rearranging
operations according to well-known rules of floating-point
arithmetic, rather than by adjusting the precision.

Unfortunately, the fact that they are static analyses also
means that they are not dataset-sensitive, and still give con-
servative estimates that may not be useful. In addition,
they require some manual tuning by the programmer, par-
ticularly with regards to the extent that loops are unrolled:
more unrolling produces better answers but requires more
lengthy analyses. These techniques also only work for a
subset of language features (often excluding HPC-specific
interests like MPI communication), and are usually limited
to C programs. Finally, these techniques merely make ob-
servations about error, and do not aid the programmer in
building mixed-precision variants of their code.

4.3 Manual mixed-precision applications
More recently, many researchers [4, 9, 10, 25, 34, 42, 43]

have demonstrated that mixed precision can achieve the
same results as using purely double-precision arithmetic,
while being much faster and memory-efficient. They usually
present linear solvers (particularly sparse solvers) as exam-
ples, showing how the majority of operations can be per-
formed in single precision. These solvers have been applied

1: LU ← PA
2: solve Ly = Pb
3: solve Ux0 = y
4: for k = 1, 2, ... do
5: rk ← b−Axk−1 (*)
6: solve Ly = Prk
7: solve Uzk = y
8: xk ← xk−1 + zk (*)
9: check for convergence

10: end for

Figure 12: Mixed precision algorithm

to a wide range of problems, including fluid dynamics [3],
lattice quantum chromodynamics [12], finite element meth-
ods [20], and Stokes flow problems [18]. Often, GPUs are
cited as the target of these optimizations because of their
streaming capabilities [3, 12, 19].

In the iterative algorithm shown in Figure 12, for exam-
ple, only the steps marked with asterisks (lines 5 and 8)
must be executed in double precision. The authors note
that all O(n3) steps can be performed in single precision,
while the double-precision steps are only O(n2). Thus, us-
ing mixed precision can yield significant performance and
memory bandwidth savings. On the streaming Cell proces-
sor, for instance, the mixed-precision version performed up
to eleven times faster than the original double-precision ver-
sion. Even on non-streaming processors, they obtained a
performance improvement between 50% and 80%.

Researchers in the field of computer graphics have also
found that mixed-precision algorithms can improve perfor-
mance [23]. By varying the number of bits used for graphics
computations, they report speedups of up to 4X or 5X, with
little or no apparent image degradation. They use fixed-
point arithmetic, but the mixed-precision concepts are sim-
ilar to floating-point. Unfortunately, these techniques do
not automatically generalize to other domains because they
involve very specialized vertex and lighting calculations.

In recent work, Jenkins and others [27] describe a novel
scheme for reorganizing data structures by numerical signif-
icance. Their technique splits up a floating-point number
into several chunks on byte boundaries. All pieces of corre-
sponding significance are stored consecutively in memory for
storage and I/O, and the original numbers are re-assembled
only when needed for calculation. Thus, the developer can
vary the precision of floating-point data during data move-
ment by truncating the lower-precision blocks. In their ex-
periments, they found that some applications can use as few
as three bytes (24 bits) of floating-point data and retain an
acceptable level of accuracy. This work focused on the I/O
implications, however, and did not address the possibility of
single-precision arithmetic. Their system also incurs over-
head during data re-assembly.

4.4 Dynamic cancellation detection
In previous work, we developed a dynamic runtime anal-

ysis for detecting numerical cancellation [32], which is a loss
of significant bits due to the subtraction of nearly identi-
cal numbers. Cancellation can be harmful if one of the
numbers was subject to roundoff error from previous cal-
culations. Our analysis can detect all cancellations above a
given threshold, reporting aggregate results for each instruc-
tion as well as a sampling of detailed information about indi-



vidual cancellations. These results can inform the developer
about the floating-point behavior of their program. How-
ever, since cancellation does not necessarily always indicate
that harmful roundoff error has occurred, the results can be
difficult to interpret and to apply. Other authors have built
on this work and developed more heavyweight techniques
that quantify the “badness” of individual cancellations [6] in
an attempt to be more helpful to the developer, but the over-
head of their techniques make them prohibitively expensive
for full-scale data sets. None of these efforts directly con-
tribute towards mixed-precision computation.

5. CONCLUSION
We have shown that automated techniques can build mixed-

precision configurations of existing binaries that use double-
precision arithmetic, and that such techniques can be used
to search an application automatically for portions that can
be replaced with single-precision arithmetic. We have pre-
sented benchmark overhead results that show the technique’s
feasibility, and have described two experiments that demon-
strated a speedup gained by a conversion guided by our anal-
ysis. In the future, we plan to optimize our implementation
further by streamlining the inserted code to reduce overhead
and by improving the search algorithm to converge more
quickly. This work improves the ability of high-performance
floating-point application developers to make informed deci-
sions regarding the behavior of their code and the necessary
precision levels for various parts of their programs.
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